ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дана последовательность чисел x1, x2, ... . Известно, что 0<x1<1 и xk+1=xk-xk2 для всех k>1. Докажите, что x12+x22+...+xn2<1 для любого n>1.

Вниз   Решение


Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

ВверхВниз   Решение


а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?

ВверхВниз   Решение


Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 233]      



Задача 35373

Тема:   [ Рекуррентные соотношения ]
Сложность: 3
Классы: 9,10,11

Дана последовательность чисел x1, x2, ... . Известно, что 0<x1<1 и xk+1=xk-xk2 для всех k>1. Докажите, что x12+x22+...+xn2<1 для любого n>1.
Прислать комментарий     Решение


Задача 35468

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Найдите количество слов длины 10, состоящих только из букв "а" и "б" и не содержащих в записи двух букв "б" подряд.
Прислать комментарий     Решение


Задача 60560

 [Задача Леонардо Пизанского]
Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9

Некто приобрел пару кроликов и поместил их в огороженный со всех сторон загон. Сколько кроликов будет через год, если считать, что каждый месяц пара дает в качестве приплода новую пару кроликов, которые со второго месяца жизни также начинают приносить приплод?

Прислать комментарий     Решение

Задача 60564

 [Тождество Кассини]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

Прислать комментарий     Решение

Задача 60583

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .