ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что  pp+2 + (p + 2)p ≡ 0 (mod 2p + 2),  где  p > 2  – простое число.

   Решение

Задачи

Страница: << 208 209 210 211 212 213 214 >> [Всего задач: 2440]      



Задача 60668

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

Прислать комментарий     Решение

Задача 60675

Темы:   [ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9,10

На 99 карточках пишутся числа 1, 2, ..., 99. Затем карточки тасуются и раскладываются чистыми сторонами вверх. На чистых сторонах карточек снова пишутся числа 1, 2, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Докажите, что в результате получится чётное число.

Прислать комментарий     Решение


Задача 60681

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Имеется 100 камней. Два игрока берут по очереди от 1 до 5 камней. Проигрывает тот, кто берет последний камень.
Определите выигрышную стратегию первого игрока.

Прислать комментарий     Решение

Задача 60714

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Докажите, что  pp+2 + (p + 2)p ≡ 0 (mod 2p + 2),  где  p > 2  – простое число.

Прислать комментарий     Решение

Задача 60718

Темы:   [ Арифметика остатков (прочее) ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

p – простое число. Для каких чисел a решением сравнения  ax ≡ 1 (mod p)  будет само число a?

Прислать комментарий     Решение

Страница: << 208 209 210 211 212 213 214 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .