ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Ссылки по теме:
Статья Н. Виленкина "Сравнения и классы вычетов" Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.) ![]() ![]() Пусть n – натуральное число, не кратное 17. Докажите, что либо n8 + 1, либо n8 – 1 делится на 17. ![]() ![]() |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 606]
Малая теорема Ферма. Пусть p – простое число и
p не делит a. Тогда ap–1 ≡ 1 (mod p).
Докажите, что для любого натурального числа найдётся кратное ему число, десятичная запись которого состоит только из 0 и 1.
Будет ли простым число 2571092 + 1092?
Докажите, что если p – простое число, p ≠ 2, 5, то длина периода разложения 1/p в десятичную дробь делит p – 1.
Пусть n – натуральное число, не кратное 17. Докажите, что либо n8 + 1, либо n8 – 1 делится на 17.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 606] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |