ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)

Вниз   Решение


Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 606]      



Задача 60736

 [Малая теорема Ферма]
Темы:   [ Малая теорема Ферма ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

Малая теорема Ферма. Пусть p – простое число и p не делит a. Тогда  ap–1 ≡ 1 (mod p).
Докажите теорему Ферма, разлагая  (1 + 1 + ... + 1)p  посредством полиномиальной теоремы (см. задачу 60400).

Прислать комментарий     Решение

Задача 60739

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что для любого натурального числа найдётся кратное ему число, десятичная запись которого состоит только из 0 и 1.

Прислать комментарий     Решение

Задача 60746

Темы:   [ Малая теорема Ферма ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10,11

Будет ли простым число  2571092 + 1092?

Прислать комментарий     Решение

Задача 60747

Темы:   [ Малая теорема Ферма ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 9,10,11

Докажите, что если p – простое число,  p ≠ 2, 5,  то длина периода разложения 1/p в десятичную дробь делит  p – 1.
Приведите пример, когда длина периода совпадает с  p – 1.

Прислать комментарий     Решение

Задача 60749

Темы:   [ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .