ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора. РешениеПри каких натуральных a и b число logab будет рациональным? Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 416]
При каких натуральных a и b число logab будет рациональным?
Для данного многочлена P(x) опишем способ, который позволяет
построить многочлен R(x), который имеет те же корни, что и
P(x), но все кратности 1. Положим Q(x) = (P(x), P'(x)) и R(x) = P(x)Q–1(x). Докажите, что
а) P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4; б) P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.
Докажите, что при n > 0 многочлен nxn+1 – (n + 1)x n + 1 делится на (x – 1)2.
(xn + a1xn - 1 +...+ akxn - k) = 0
возможно только для тех последовательностей {xn}, для
которых
xn = 0. Докажите, что все корни
многочлена
P() = + a1 + a2 +...+ ak
по модулю меньше 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 416] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|