ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

   Решение

Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 2440]      



Задача 60877

Темы:   [ Теорема Эйлера ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Прислать комментарий     Решение

Задача 60889

Темы:   [ Уравнения в целых числах ]
[ Десятичные дроби ]
Сложность: 3+
Классы: 8,9,10

Найдите все шестизначные числа, которые уменьшаются втрое при перенесении последней цифры на первое место.

Прислать комментарий     Решение

Задача 60890

Темы:   [ Уравнения в целых числах ]
[ Десятичные дроби ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Найдите все шестизначные числа, которые увеличиваются в целое число раз при перенесении последней цифры в начало.

Прислать комментарий     Решение

Задача 60891

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Докажите, что не существует целых чисел, которые от перестановки начальной цифры в конец увеличивались бы в 5, 6 или 8 раз.

Прислать комментарий     Решение

Задача 60998

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие линейные функции  P(x)  и  Q(x),  чтобы выполнялось равенство   P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .