ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Укажите все точки плоскости  (x, y),  через которые проходит хотя бы одна кривая семейства  y = p² + (2p – 1)x + 2x².

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 263]      



Задача 116482

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 7,8,9

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками
равно 1). Чему равен дискриминант этого трёхчлена?

Прислать комментарий     Решение

Задача 60941

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10,11

Укажите все точки плоскости  (x, y),  через которые проходит хотя бы одна кривая семейства  y = p² + (2p – 1)x + 2x².

Прислать комментарий     Решение

Задача 32897

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Прямые и плоскости в пространстве ]
Сложность: 3-
Классы: 9,10,11

Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy – в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy – в точке D. (O – начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны.

Прислать комментарий     Решение

Задача 35665

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3-
Классы: 8,9,10

Рассматриваются квадратичные функции  y = x² + px + q,  для которых  p + q = 2002.
Покажите, что параболы, являющиеся графиками этих функций, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 60933

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3-
Классы: 8,9,10,11

При каких a уравнение
  а)  ax² + (a + 1)x – 2 = 0;
  б)  (1 – a)x² + (a + 1)x – 2 = 0
имеет два различных корня?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 263]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .