ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 233]      



Задача 60596

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 61306

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 8,9,10

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

Прислать комментарий     Решение

Задача 98427

Темы:   [ Периодичность и непериодичность ]
[ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 7,8,9

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Прислать комментарий     Решение

Задача 31254

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 6,7,8

a1 = a2 = 1,  an+1 = anan–1 + 1.  Доказать, что an не делится на 4.

Прислать комментарий     Решение

Задача 60517

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число шагов в алгоритме Евклида может быть сколь угодно большим.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .