ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выведите формулу для суммы 13 + 23 + 33 +...+ n3.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 693]      



Задача 61431

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10,11

Выведите формулу для суммы 13 + 23 + 33 +...+ n3.

Прислать комментарий     Решение

Задача 111341

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?
Прислать комментарий     Решение


Задача 60563

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9

Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


Прислать комментарий     Решение

Задача 60566

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что при n $ \geqslant$ 1 и m $ \geqslant$ 0 выполняется равенство

Fn + m = Fn - 1Fm + FnFm + 1.


Попробуйте доказать его двумя способами: при помощи метода математической индукции и при помощи интерпретации чисел Фибоначчи из задачи 3.109. Докажите также, что тождество Кассини (см. задачу 3.112) является частным случаем этого равенства.

Прислать комментарий     Решение

Задача 60567

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 9,10,11

Докажите равенства
а) F2n + 1 = Fn2 + Fn + 12;        
б) Fn + 1Fn + 2 - FnFn + 3 = (- 1)n + 1;
в) F3n = Fn3 + Fn + 13 - Fn - 13.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 693]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .