Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 693]
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого $i$ = 1, 2, ..., $n$ верно одно из равенств $a_i = i$ или $a_i = i$ + 1. Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?
Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое
число, начиная с третьего, равно сумме двух предыдущих. В этой
последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна
никакому числу рассматриваемой последовательности.
|
|
Сложность: 3+ Классы: 10,11
|
Дана последовательность чисел F1, F2, ...; F1 = F2 = 1 и
Fn+2 = Fn + Fn+1. Доказать, что F5k делится на 5 при k = 1, 2, ... .
|
|
Сложность: 3+ Классы: 8,9,10
|
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что
найдётся такой член прогрессии, в записи которого участвует цифра 9.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 693]