ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Арифметика биномиальных коэффициентов" (Фукс Д., Фукс М) Материалы по этой теме: |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства: |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107]
а) Докажите равенство б) Вычислите суммы
Найдите все корни уравнения (z – 1)n = (z + 1)n.
а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде Биномиальный коэффициент интерпретируется как многочлен от переменной x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.б) Докажите, что коэффициенты d0, d1, ..., dn в этом представлении вычисляются по формуле dk = Δkf(0) (0 ≤ k ≤ n).
Пусть многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n.
Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|