ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01. ![]() ![]() На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1. ![]() ![]() |
Страница: 1 [Всего задач: 4]
а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде б) Докажите, что коэффициенты d0, d1, ..., dn в этом представлении вычисляются по формуле dk = Δkf(0) (0 ≤ k ≤ n).
Пусть многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n.
Докажите, что если многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n, то он принимает целые значения во всех целых точках.
Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |