ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 54629

Темы:   [ Четырехугольники (построения) ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны.

Прислать комментарий     Решение

Задача 64388

Темы:   [ Четырехугольники (построения) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Симметрия и построения ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

Прислать комментарий     Решение

Задача 66243

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4-
Классы: 9,10

Выпуклый четырёхугольник разрезан диагоналями на четыре треугольника. Восстановите четырёхугольник по центрам описанных окружностей двух соседних треугольников и центрам вписанных окружностей двух противоположных друг другу треугольников.

Прислать комментарий     Решение

Задача 54625

Темы:   [ Четырехугольники (построения) ]
[ Подобные треугольники и гомотетия (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте трапецию по отношению её оснований, двум углам при одном из этих оснований и высоте.

Прислать комментарий     Решение


Задача 57242

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .