ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Площадь
>>
Отношения площадей
>>
Отношение площадей треугольников с общим углом
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 95]
На сторонах AB, BC и AC треугольника ABC взяты соответственно точки M, N и K так, что AM : MB = 2 : 3, AK : KC = 2 : 1, BN : NC = 1 : 2. В каком отношении прямая MK делит отрезок AN?
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O.
Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 95] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|