ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Второклассники Коля, Вася, Миша, Стёпа и Гриша по очереди верно решили пять примеров из таблицы умножения. Каждый следующий мальчик получил ответ в полтора раза больше предыдущего. Какие числа умножал Стёпа? ![]() |
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 2440]
Докажите, что при любых целых a и натуральном n выражение (a + 1)2n+1 + an+2 делится на a² + a + 1.
Докажите справедливость оценок: а) б) в) г)
Наибольший общий делитель натуральных чисел a, b будем обозначать (a, b). Пусть натуральное число n таково, что
Второклассники Коля, Вася, Миша, Стёпа и Гриша по очереди верно решили пять примеров из таблицы умножения. Каждый следующий мальчик получил ответ в полтора раза больше предыдущего. Какие числа умножал Стёпа?
В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N.
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |