ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Вниз   Решение


Автор: Знак Е.

Существует ли функция f(x) , определенная при всех x и для всех x,y удовлетворяющая неравенству

|f(x+y)+ sin x+ sin y|<2?

ВверхВниз   Решение


Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 111921

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5+
Классы: 8,9,10

Стороны BC и AC треугольника ABC касаются соответствующих вневписанных окружностей в точках A1 , B1 . Пусть A2 , B2 — ортоцентры треугольников CAA1 и CBB1 . Докажите, что прямая A2B2 перпендикулярна биссектрисе угла C .
Прислать комментарий     Решение


Задача 107858

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Прислать комментарий     Решение

Задача 54615

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Периметр треугольника ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.

Прислать комментарий     Решение

Задача 64766

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9,10

Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.

Прислать комментарий     Решение

Задача 110084

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4
Классы: 8,9,10

Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .