ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Стороны произвольного выпуклого многоугольника покрашены снаружи. Проводится несколько диагоналей многоугольника, так, что никакие три не пересекаются в одной точке. Каждая из этих диагоналей тоже покрашена с одной стороны, т.е. с одной стороны отрезка проведена узкая цветная полоска. Доказать, что хотя бы один из многоугольников, на которые разбит диагоналями исходный многоугольник, весь покрашен снаружи. ![]() ![]() Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
![]() ![]() ![]() Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей. ![]() ![]() ![]() На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски? ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 158]
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?
Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |