ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 12601]      



Задача 64889

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 64942

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

Прислать комментарий     Решение

Задача 65214

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 7,8

Можно ли разрезать квадрат 5×5 на прямоугольники двух видов: 1×4 и 1×3 так, чтобы получилось 7 прямоугольников?

Прислать комментарий     Решение

Задача 65654

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65983

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Тригонометрический круг ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 9,10,11

В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .