Страница:
<< 39 40 41 42 43 44
45 >> [Всего задач: 222]
Докажите, что в любом треугольнике имеет место неравенство R ≥ 2r, где R и r – радиусы описанной и вписанной окружностей, причём равенство имеет место только для правильного треугольника.
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что
B1 и C1 – основания высот треугольника ABC.
|
|
Сложность: 5- Классы: 9,10
|
В треугольнике
АВС :
АС =
. Докажите, что центры вписанной и описанной
окружностей треугольника
АВС , середины сторон
АВ и
ВС и
вершина
В лежат на одной окружности.
|
|
Сложность: 5 Классы: 10,11
|
Касательные, проведённые к описанной окружности остроугольного треугольника
ABC в точках A и C, пересекаются в точке Z. AA1, CC1 – высоты. Прямая A1C1 пересекает прямые ZA, ZC в точках X и Y соответственно. Докажите, что описанные окружности треугольников
ABC и XYZ касаются.
Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.
Страница:
<< 39 40 41 42 43 44
45 >> [Всего задач: 222]