ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие.
  а) Кнопка со знаком умножения сломалась и не работает. Рассеянный Учёный нажал несколько кнопок в случайной последовательности. Какой результат получившейся цепочки действий более вероятен – чётное число или нечётное?
  б) Решите предыдущую задачу, если кнопку со знаком умножения починили.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]      



Задача 65278

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 9,10,11

Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

Прислать комментарий     Решение

Задача 65291

Темы:   [ Турниры и турнирные таблицы ]
[ Теория вероятностей (прочее) ]
[ Сочетания и размещения ]
[ Последовательности (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В Анчурии проходит чемпионат по шашкам в несколько туров. Дни и города проведения туров определяются жеребьёвкой. По правилам чемпионата никакие два тура не могут пройти в одном городе, и никакие два тура не могут пройти в один день. Среди болельщиков устраивается лотерея: главный приз получает тот, кто до начала чемпионата правильно угадает, в каких городах и в какие дни пройдут все туры. Если никто не угадает, то главный приз перейдёт в распоряжение оргкомитета чемпионата. Всего в Анчурии восемь городов, а на чемпионат отведено всего восемь дней. Сколько туров должно быть в чемпионате, чтобы оргкомитет с наибольшей вероятностью получил главный приз?

Прислать комментарий     Решение

Задача 65296

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Линейные рекуррентные соотношения ]
[ Четность и нечетность ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие.
  а) Кнопка со знаком умножения сломалась и не работает. Рассеянный Учёный нажал несколько кнопок в случайной последовательности. Какой результат получившейся цепочки действий более вероятен – чётное число или нечётное?
  б) Решите предыдущую задачу, если кнопку со знаком умножения починили.

Прислать комментарий     Решение

Задача 65319

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10,11

Знатоки и Телезрители играют в "Что? Где? Когда" до шести побед – кто первый выиграл шесть раундов, тот и победил в игре. Вероятность выигрыша Знатоков в одном раунде равна 0,6, ничьих не бывает. Сейчас Знатоки проигрывают со счетом  3 : 4.  Найдите вероятность того, что Знатоки все же выиграют.

Прислать комментарий     Решение

Задача 65332

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
Сложность: 3+
Классы: 8,9,10,11

У Алисы в кармане шесть волшебных пирожков – два увеличивающих (съешь – вырастешь), а остальные уменьшающие (съешь – уменьшишься). Когда Алиса встретила Мэри Энн, она, не глядя, вынула из кармана три пирожка и отдала их Мэри. Найдите вероятность того, что у одной из девочек нет ни одного увеличивающего пирожка.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .