Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 132]
|
|
Сложность: 4 Классы: 9,10,11
|
По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
а) Найти среднее количество поражённых мишеней.
б) Может ли среднее количество поражённых мишеней быть меньше n/2?
|
|
Сложность: 4 Классы: 10,11
|
В бумажном квадрате случайным образом выбирается точка O. Затем квадрат сгибают так, чтобы каждая вершина наложилась на точку O. На рисунке показана одна из возможных схем складывания. Найдите математическое ожидание числа сторон появившегося многоугольника.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В автобусе n мест, и все билеты проданы n пассажирам. Первым в автобус заходит Рассеянный Учёный и, не посмотрев на билет, занимает первое попавшееся место. Далее пассажиры входят по одному. Если вошедший видит, что его место свободно, он занимает свое место. Если же место занято, то вошедший занимает первое попавшееся свободное место. Найдите вероятность того, что пассажир, вошедший последним, займет место согласно своему билету?
|
|
Сложность: 4 Классы: 9,10,11
|
Рассеянный Ученый в своей лаборатории вывел одноклеточный организм, который с вероятностью 0,6 делится на два таких же организма, а с вероятностью 0,4 погибает, не оставив потомства. Найдите вероятность того, что через некоторое время у Рассеянного Ученого не останется ни одного такого организма.
|
|
Сложность: 4 Классы: 9,10,11
|
В игре "Что? Где? Когда?" разыгрываются 13 конвертов с вопросами от телезрителей. Конверты выбираются по очереди в случайном порядке с помощью волчка. Если знатоки отвечают верно, зарабатывают очко, если неверно – одно очко достается телезрителям. Игра оканчивается, как только одна из команд набрала 6 очков. Предположим, что силы команд Знатоков и Телезрителей равны.
а) Найдите математическое ожидание числа очков, набранных командой
Знатоков за 100 игр.
б) Найдите вероятность того, что в следующей игре конверт №5 будет разыгран.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 132]