ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 693]      



Задача 65201

Тема:   [ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

Последовательность (an) такова, что  an = n²  при  1 ≤ n ≤ 5  и при всех натуральных n выполнено равенство  an+5 + an+1 = an+4 + an.  Найдите a2015.

Прислать комментарий     Решение

Задача 65247

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

Прислать комментарий     Решение

Задача 65391

Темы:   [ Арифметическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

Прислать комментарий     Решение

Задача 65985

Темы:   [ Арифметическая прогрессия ]
[ Тригонометрические уравнения ]
[ Геометрические интерпретации в алгебре ]
Сложность: 3+
Классы: 10,11

(sin x, sin y, sin z)  – возрастающая арифметическая прогрессия. Может ли последовательность  (cos x, cos y, cos z)  также являться арифметической прогрессией?

Прислать комментарий     Решение

Задача 66023

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9,10,11

Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 693]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .