ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 590]      



Задача 61410

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  x + y + z = 6,  то  x² + y² + z² ≥ 12.

Прислать комментарий     Решение

Задача 65425

Темы:   [ Системы линейных уравнений ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

Сумма трёх различных чисел равна 10, а разность между наибольшим и наименьшим равна 3.
Какие значения может принимать число, среднее по величине?

Прислать комментарий     Решение

Задача 65479

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
[ Разложение на множители ]
Сложность: 3+
Классы: 10,11

Решите в натуральных числах уравнение:  x³ + y³ + 1 = 3xy.

Прислать комментарий     Решение

Задача 65525

Темы:   [ Тригонометрические неравенства ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Решите неравенство   .

Прислать комментарий     Решение

Задача 65574

Темы:   [ Разбиения на пары и группы; биекции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .