ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 13]      



Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Задача 58087

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Площадь трапеции ]
[ Отношения площадей (прочее) ]
Сложность: 5
Классы: 8,9,10

Каждая из девяти прямых разбивает квадрат на два четырехугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 110794

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Отношение, в котором биссектриса делит сторону ]
[ Периметр треугольника ]
[ Свойства биссектрис, конкуррентность ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношения площадей (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .