ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника? ![]() ![]() На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки. ![]() ![]() ![]() Переложите пирамиду из 10 кубиков (см. рисунок) так, чтобы её форма осталась прежней, но каждый кубик соприкасался только с новыми кубиками. ![]() ![]() ![]() Укажите все точки плоскости (x, y), через которые проходит хотя бы одна кривая семейства y = p² + (2p – 1)x + 2x². ![]() ![]() ![]() Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3. ![]() ![]() |
Страница: 1 [Всего задач: 4]
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |