Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 418]
|
|
Сложность: 4- Классы: 7,8,9,10
|
Двое пишут а) 30-значное; б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?
|
|
Сложность: 4- Классы: 10,11
|
Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа a – b длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа a + kb может также оказаться равной 15?
|
|
Сложность: 4- Классы: 5,6,7
|
Вася живет в многоквартирном доме. В каждом подъезде дома одинаковое количество этажей, на каждом этаже по четыре квартиры, каждая квартира имеет одно-, дву- или трёхзначный номер. Вася заметил, что количество квартир с двузначным номером у него в подъезде в десять раз больше количества подъездов в
доме. Сколько всего квартир может быть в этом доме?
|
|
Сложность: 4- Классы: 5,6,7
|
На сколько равных восьмиугольников можно разрезать квадрат размером 8×8?
(Все разрезы должны проходить по линиям сетки.)
Можно ли так расставить цифры 1, 2, ..., 8 в клетках а) буквы Ш; б) полоски (см. рис.), чтобы при любом разрезании фигуры на две части сумма всех цифр в одной из частей делилась на сумму всех цифр в другой? (Резать можно только по границам клеток. В каждой клетке должна стоять одна цифра, каждую цифру можно использовать только один раз.)
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 418]