Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 34]
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали четырёхугольника АВСD пересекаются в точке О, М и N – середины сторон ВС и AD соответственно. Отрезок MN делит площадь четырёхугольника пополам. Найдите отношение ОМ : ОN, если AD = 2BC.
Прямая, проходящая через вершину основания равнобедренного
треугольника, делит его площадь пополам, а периметр треугольника делит на
части длиной 5 и 7. Найдите площадь треугольника и укажите, где лежит
центр описанной окружности: внутри или вне треугольника.
|
|
Сложность: 3+ Классы: 9,10
|
Плоская выпуклая фигура ограничена отрезками AB и AC и дугой BC некоторой окружности. Постройте какую-нибудь прямую, которая делит пополам её площадь.
Треугольник ABC с острым углом ∠A = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины B, делит треугольник ABC на две части одинаковой площади. Найдите угол B.
Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Через середину дуги AC проведите прямую, делящую площадь фигуры пополам.
Страница:
<< 1 2 3 4 5 6
7 >> [Всего задач: 34]