ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

   Решение

Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 2440]      



Задача 66012

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?

Прислать комментарий     Решение

Задача 66018

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

Прислать комментарий     Решение

Задача 66024

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз?

Прислать комментарий     Решение

Задача 66080

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число  akn+1 – 1  делится на n.

Прислать комментарий     Решение

Задача 66128

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8

В ряд стоят 33 девочки и каждая держит по ромашке. Одновременно каждая из девочек передаёт свою ромашку девочке, стоящей от неё через одну.
Может ли оказаться так, что у каждой девочки будет опять по одной ромашке?

Прислать комментарий     Решение

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .