Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 70]
|
|
Сложность: 5 Классы: 8,9,10,11
|
Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-
удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что pn+1 ≤ 22n + 1, где pn – n-е простое число.
|
|
Сложность: 3+ Классы: 7,8,9
|
Представьте следующие числа в виде обычных и в виде десятичных дробей:
а) 0,(12) + 0,(122); б) 0,(3)·0,(4); в) 0,(9) – 0,(85).
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?
На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.
Страница:
<< 8 9 10 11 12
13 14 >> [Всего задач: 70]