ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



Задача 67298

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)
Прислать комментарий     Решение


Задача 60509

Темы:   [ Простые числа и их свойства ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

Прислать комментарий     Решение

Задача 60843

Темы:   [ Периодические и непериодические дроби ]
[ Обыкновенные дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 7,8,9

Представьте следующие числа в виде обычных и в виде десятичных дробей:
  а)  0,(12) + 0,(122);   б)  0,(3)·0,(4);   в)  0,(9) – 0,(85).

Прислать комментарий     Решение

Задача 65867

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10,11

Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?

Прислать комментарий     Решение

Задача 66048

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9

На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .