ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.

   Решение

Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 606]      



Задача 35136

Темы:   [ Десятичная система счисления ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.

Прислать комментарий     Решение

Задача 35741

Темы:   [ Теория алгоритмов (прочее) ]
[ Ребусы ]
[ Арифметика остатков (прочее) ]
[ Криптография ]
Сложность: 3+
Классы: 9,10,11

Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице:

Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр:  317564404970017677550547850355.  Восстановите исходное сообщение.

Прислать комментарий     Решение

Задача 60599

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10

Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

Прислать комментарий     Решение

Задача 66178

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.

Прислать комментарий     Решение

Задача 73597

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Теорема Эйлера ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого нечётного натурального числа a существует такое натуральное число b, что  2b – 1  делится на a.

Прислать комментарий     Решение

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .