ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 58449

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Вневписанная окружность треугольника ABC касается стороны BC в точке D, а продолжений сторон AB и AC — в точках E и F. Пусть T — точка пересечения прямых BF и CE. Докажите, что точки A, D и T лежат на одной прямой.
Прислать комментарий     Решение


Задача 58450

 [Теорема Брианшона]
Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Пусть ABCDEF — описанный шестиугольник. Докажите, что его диагонали AD, BE и CF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Задача 58453

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Точки A, B, C и D лежат на окружности, SA и SD — касательные к этой окружности, P и Q — точки пересечения прямых AB и CD, AC и BD соответственно. Докажите, что точки P, Q и S лежат на одной прямой.
Прислать комментарий     Решение


Задача 58451

 [Теорема Паскаля]
Темы:   [ Теорема Паскаля ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 9,10,11

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Прислать комментарий     Решение

Задача 66317

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Вспомогательные подобные треугольники ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .