Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 50]
Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.
|
|
Сложность: 3+ Классы: 7,8,9
|
Два квадрата и равнобедренный треугольник
расположены так, как показано на рисунке (вершина K
большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.
Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
Выпуклый четырёхугольник ABCD описан вокруг окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2.
Найдите периметр четырёхугольника ABCD.
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 50]