ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:

  • каждая отмеченная точка лежала хотя бы на одной из этих прямых,
  • на каждой прямой лежало хотя бы две отмеченные точки,
  • все три проведённые прямые пересекались бы в одной точке (не обязательно отмеченной).

   Решение

Задачи

Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 12601]      



Задача 66557

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?
Прислать комментарий     Решение


Задача 66620

Тема:   [ Разрезания, разбиения, покрытия и замощения ]
Сложность: 3
Классы: 5,6,7,8

Можно ли разрезать по границам клеток фигуру на рисунке на 4 одинаковые части?

Прислать комментарий     Решение

Задача 66627

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7,8

На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:

  • каждая отмеченная точка лежала хотя бы на одной из этих прямых,
  • на каждой прямой лежало хотя бы две отмеченные точки,
  • все три проведённые прямые пересекались бы в одной точке (не обязательно отмеченной).

Прислать комментарий     Решение

Задача 66761

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 5,6,7

Если из квадратных плиток, которые отличаются только расцветкой, сложить прямоугольник $3\times 4$, как на рисунке, то целиком в нем поместится $6$ черепашек. А сколько черепашек поместится целиком в составленном таким же образом прямоугольнике $20\times 21$?

Прислать комментарий     Решение

Задача 66865

Темы:   [ Окружности (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?
Прислать комментарий     Решение


Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .