Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 139]
|
|
Сложность: 4+ Классы: 9,10,11
|
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.
Радиус описанной окружности треугольника
ABC равен радиусу окружности,
касающейся стороны
AB в точке
C' и продолжений двух других сторон в точках
A' и
B' . Докажите, что центр описанной окружности треугольника
ABC
совпадает с ортоцентром (точкой пересечения высот) треугольника
A'B'C' .
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
Дан выпуклый четырёхугольник ABCD. Пусть I и J – центры окружностей, вписанных в треугольники ABC и ADC соответственно, а Ia и Ja – центры вневписанных окружностей треугольников ABC и ADC, вписанных в углы BAC и DAC соответственн). Докажите, что точка K пересечения прямых IJa и JIa лежит на биссектрисе угла BCD.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 139]