ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 372]      



Задача 54384

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В окружность диаметра 1 вписан четырёхугольник ABCD, у которого угол D прямой,  AB = BC.
Найдите площадь четырёхугольника ABCD, если его периметр равен  .

Прислать комментарий     Решение

Задача 66697

Темы:   [ Касательные прямые и касающиеся окружности (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Поворотная гомотетия (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Две окружности с центрами $O_1$ и $O_2$ касаются внешним образом в точке $T$. К ним проведена общая внешняя касательная, касающаяся первой окружности в точке $A$, а второй – в точке $B$. Общая касательная к окружностям, проведённая в точке $T$, пересекает прямую $AB$ в точке $M$. Пусть $AC$ – диаметр первой окружности. Докажите, что отрезки $CM$ и $AO_2$ перпендикулярны.

Прислать комментарий     Решение

Задача 105104

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9,10

Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Прислать комментарий     Решение

Задача 108082

Темы:   [ Окружность, вписанная в угол ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.

Прислать комментарий     Решение

Задача 116158

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .