Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 60]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что $CK = AB = BC$ и ∠ KAC = 30°. Найдите угол $AKB$.
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
Докажите, что треугольник с вершинами в ортоцентрах треугольников AHBHC, BHAHC и CHAHB равен треугольнику HAHBHC.
|
|
Сложность: 4- Классы: 10,11
|
В основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO.
При каком наименьшем значении n отсюда следует, что SO – высота пирамиды?
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 60]