ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001). Обсуждая в классе зимние каникулы, Саша сказал: "Теперь, после того как я слетал в Аддис-Абебу, я встречал Новый год во всех возможных полусферах Земли, кроме одной!" |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129]
Обсуждая в классе зимние каникулы, Саша сказал: "Теперь, после того как я слетал в Аддис-Абебу, я встречал Новый год во всех возможных полусферах Земли, кроме одной!"
Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0.
В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.
Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например, 1001! + 2, 1001! + 3, ...,
1001! + 1001).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|