ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?

б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 501]      



Задача 66892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?

б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?

Прислать комментарий     Решение

Задача 108001

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Прислать комментарий     Решение

Задача 108632

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки E и F лежат на сторонах соответственно AB и BC ромба ABCD, причём  AE = 5BE,  BF = 5CF.  Известно, что треугольник DEF – равносторонний. Найдите угол BAD.

Прислать комментарий     Решение

Задача 52542

Темы:   [ Общая касательная к двум окружностям ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Радиусы двух окружностей равны 2 и 4. Их общие внутренние касательные взаимно перпендикулярны. Найдите длину каждой из них.

Прислать комментарий     Решение


Задача 66941

Темы:   [ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9,10,11

Автор: Saghafian M.

На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .