ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 166]      



Задача 110188

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 58309

Темы:   [ Индукция в геометрии ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9

Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD  (A0 = A),  An+1 – точка пересечения прямых EBn+1 и  AB. Докажите, что  AnB = AB/n+1.

Прислать комментарий     Решение

Задача 66978

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Трапеции (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 108043

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
[ Выход в пространство ]
Сложность: 4+
Классы: 8,9

В трапеции ABCD  AB – основание,  AC = BCH – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.

Прислать комментарий     Решение

Задача 115458

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке O . Описанные окружности треугольников AOB и COD пересекаются в точке М на основании AD . Докажите, что треугольник BMC равнобедренный.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 166]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .