ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников? Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку. ![]() |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]
Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?
Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Назовём лабиринтом шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде ВПРАВО ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды ВЛЕВО, ВВЕРХ и ВНИЗ. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?
а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки. б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |