ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга? ![]() |
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 354]
Докажите, что для любого неравнобедренного треугольника
На сушке в случайном порядке (как достали из стиральной машины) висит n носков. Среди них – два любимых носка Рассеянного Учёного. Носки загорожены сохнущей простыней, поэтому Учёный их не видит, и достаёт по одному носку на ощупь. Найдите математическое ожидание числа носков, снятых Учёным к моменту, когда у него окажутся оба любимых носка.
а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?
В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC?
Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |