ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга. |
Страница: << 1 2 3 4 [Всего задач: 19]
Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
Докажите, что для любых целых чисел p и q (q ≠ 0), справедливо неравенство
Рассматривается последовательность, n-й член которой есть первая цифра числа 2n.
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
Страница: << 1 2 3 4 [Всего задач: 19] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|