ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Сообщение, зашифрованное в пункте А шифром простой замены в алфавите из букв русского языка и знака пробела (–) между словами, передается в пункт Б отрезками по 12 символов. При передаче очередного отрезка сначала передаются символы, стоящие на чётных местах в порядке возрастания их номеров, начиная со второго, а затем – символы, стоящие на нечётных местах (также в порядке возрастания их номеров), начиная с первого. В пункте Б полученное шифрованное сообщение дополнительно шифруется с помощью некоторого другого шифра простой замены в том же алфавите, а затем таким же образом, как и из пункта А, передается в пункт В. По перехваченным в пункте В отрезкам:
    СО–ГЖТПНБЛЖО
    РСТКДКСПХЕУБ
    –Е–ПФПУБ–ЮОБ
    СП–ЕОКЖУУЛЖЛ
    СМЦХБЭКГОЩПЫ
    УЛКЛ–ИКНТЛЖГ
восстановите исходное сообщение, зная, что в одном из переданных отрезков зашифровано слово КРИПТОГРАФИЯ.

Вниз   Решение


Найдите ключ к "тарабарской грамоте"  — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"'  — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти".

ВверхВниз   Решение


Для проверки телетайпа, печатающего буквами русского алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ передан набор из 9 слов, содержащий все 33 буквы алфавита. В результате неисправности телетайпа на приемном конце получены слова ГЪЙ АЭЁ БПРК ЕЖЩЮ НМЬЧ СЫЛЗ ШДУ ЦХОТ ЯФВИ Восстановите исходный текст, если известно, что характер неисправности таков, что каждая буква заменяется буквой, отстоящей от нее в указанном алфавите не дальше, чем на две буквы. Например, буква Б может перейти в одну из букв А, Б, В, Г. (Задача с сайта www.cryptography.ru.)

ВверхВниз   Решение


Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



Задача 76423

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 9,10

Решить систему уравнений:
  x² + y² – 2z² = 2a²,
  x + y + 2z = 4(a² + 1),
  z² – xy = a².

Прислать комментарий     Решение

Задача 76440

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10

Решить систему:
   x + y + z = a,
   x
² + y² + z² = a²,
   x³ + y³ + z³ = a³.

Прислать комментарий     Решение

Задача 76520

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 8,9

Решить систему уравнений:
   x1 + x2 + x3 = 6,
   x2 + x3 + x4 = 9,
   x3 + x4 + x5 = 3,
   x4 + x5 + x6 = –3,
   x5 + x6 + x7 = –9,
   x6 + x7 + x8 = –6,
   x7 + x8 + x1 = –2,
   x8 + x1 + x2 = 2.

Прислать комментарий     Решение

Задача 79468

Темы:   [ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 3
Классы: 8

Даны пять различных положительных чисел, которые можно разбить на две группы так, чтобы суммы чисел в этих группах были одинаковыми. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 79481

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
[ Разложение на множители ]
Сложность: 3
Классы: 11

Решить уравнение  

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .