ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти четырёхзначное число, которое при делении на 131 даёт в остатке 112, а при делении на 132 даёт в остатке 98.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 2440]      



Задача 67331

Темы:   [ НОД и НОК. Взаимная простота ]
[ Разложение в произведение транспозиций и циклов ]
Сложность: 3
Классы: 9,10,11

а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт?

Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?

б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке.
Прислать комментарий     Решение


Задача 76434

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Доказать формулы
  а)  [a, b](a, b) = ab.
  б)  [a, b, c](a, b)(b, c)(c, a) = (a, b, c)abc.

Прислать комментарий     Решение

Задача 76498

Темы:   [ Уравнения в целых числах ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 3
Классы: 10,11

Решить в целых числах уравнение  x + y = x² – xy + y².

Прислать комментарий     Решение

Задача 76519

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Найти четырёхзначное число, которое при делении на 131 даёт в остатке 112, а при делении на 132 даёт в остатке 98.

Прислать комментарий     Решение

Задача 78502

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Доказать, что при нечётном n > 1 уравнение  xn + yn = zn  не может иметь решений в целых числах, для которых  x + y  – простое число.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .