ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 78071

Темы:   [ Высота пирамиды (тетраэдра) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 10,11

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?
Прислать комментарий     Решение


Задача 87135

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде расположен шар радиуса 1. В точке, делящей пополам высоту пирамиды, он касается внешним образом полушара. Полушар опирается на круг, вписанный в основание пирамиды, шар касается боковых граней пирамиды. Найдите площадь боковой поверхности пирамиды и угол между боковыми гранями пирамиды.
Прислать комментарий     Решение


Задача 87136

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде расположены два шара Q1 и Q2 . Шар Q1 вписан в пирамиду и имеет радиус 2, шар Q2 касается внешним образом шара Q1 и боковых граней пирамиды. Его радиус равен 1. Найдите площадь боковой поверхности пирамиды и угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 109601

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Сферы (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 10,11

Высоты тетраэдра пересекаются в одной точке.
Докажите, что эта точка, основание одной из высот и три точки, делящие другие высоты в отношении   2 : 1,  считая от вершин, лежат на одной сфере.

Прислать комментарий     Решение

Задача 109143

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Признаки перпендикулярности ]
[ Перпендикулярные плоскости ]
Сложность: 4+
Классы: 10,11

Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .