ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице: Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр: 317564404970017677550547850355. Восстановите исходное сообщение. ![]() ![]() Доказать, что число 221959 – 1 делится на 3. ![]() ![]() |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 368]
Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число m + 6 тоже хорошее, а если число n плохое, то и число n + 15 тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?
Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице: Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр: 317564404970017677550547850355. Восстановите исходное сообщение.
Докажите, что
В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |