ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

Вниз   Решение


Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

ВверхВниз   Решение


Докажите, что если выпуклый многоугольник можно разбить на несколько параллелограммов, то он имеет центр симметрии.

ВверхВниз   Решение


На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 34886

Темы:   [ Разрезания на параллелограммы ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3+
Классы: 7,8,9

Докажите, что если выпуклый многоугольник можно разбить на несколько параллелограммов, то он имеет центр симметрии.
Прислать комментарий     Решение


Задача 78285

Тема:   [ Разрезания на параллелограммы ]
Сложность: 4-
Классы: 10,11

На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.
Прислать комментарий     Решение


Задача 64526

Темы:   [ Разрезания на параллелограммы ]
[ Системы точек и отрезков (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 9,10,11

Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?

Прислать комментарий     Решение

Задача 110049

Темы:   [ Разрезания на параллелограммы ]
[ Произвольные многоугольники ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 7,8,9

Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

Прислать комментарий     Решение

Задача 111689

Темы:   [ Разрезания на параллелограммы ]
[ Перегруппировка площадей ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8,9,10,11

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .