ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 79260

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79263

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 61167

Темы:   [ Тригонометрические уравнения ]
[ Квадратные корни (прочее) ]
Сложность: 4
Классы: 9,10,11

Решите уравнения при 0o < x < 90o:

a) $ \sqrt{13-12\cos x}$ + $ \sqrt{7-4\sqrt3\sin x}$ = 2$ \sqrt{3}$;

б) $ \sqrt{2-2\cos x}$ + $ \sqrt{10-6\cos x}$ = $ \sqrt{10-6\cos 2x}$;

в) $ \sqrt{5-4\cos x}$ + $ \sqrt{13-12\sin
x}$ = $ \sqrt{10}$.
Прислать комментарий     Решение

Задача 61464

Темы:   [ Линейные рекуррентные соотношения ]
[ Квадратные корни (прочее) ]
Сложность: 4+
Классы: 10,11

Рассмотрим равенства:

2 + $\displaystyle \sqrt{3}$ = $\displaystyle \sqrt{4}$ + $\displaystyle \sqrt{3}$,
(2 + $\displaystyle \sqrt{3}$)2 = $\displaystyle \sqrt{49}$ + $\displaystyle \sqrt{48}$,
(2 + $\displaystyle \sqrt{3}$)3 = $\displaystyle \sqrt{676}$ + $\displaystyle \sqrt{675}$,
(2 + $\displaystyle \sqrt{3}$)4 = $\displaystyle \sqrt{9409}$ + $\displaystyle \sqrt{9408}$.

Обобщите результат наблюдения и докажите возникшие у вас догадки.

Прислать комментарий     Решение

Задача 109920

Темы:   [ Монотонность и ограниченность ]
[ Доказательство тождеств. Преобразования выражений ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Иррациональные уравнения ]
Сложность: 4+
Классы: 9,10,11

Автор: Сонкин М.

Докажите, что если

++=++= = ++

для некоторых a , b , c , x , y , z , то x=y=z или a=b=c .
Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .