Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 2440]
|
|
Сложность: 3+ Классы: 9,10
|
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
Решить в целых числах уравнение xy/z + xz/y + yz/x = 3.
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать, что число 100...001, в котором 21974 + 21000 – 1 нулей, составное.
|
|
Сложность: 4- Классы: 6,7,8
|
К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.
Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.
Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 2440]