ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Стороны AB и AC треугольника равны соответственно a и b . На медиане, проведённой к стороне BC взята точка M . Сумма расстояний от этой точки до прямых AB и AC равна c . Найдите эти расстояния. ![]() ![]() Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям? ![]() ![]() |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Дано натуральное число n > 3. Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?
Дана функция
Страница: << 1 2 3 4 5 >> [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |