ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой. ![]() ![]() В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? ![]() ![]() |
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 508]
Докажите, что диагонали AD, BE, CF вписанного шестиугольника ABCDEF пересекаются в одной точке в каждом из следующих случаев:
Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?
В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?
Докажите, что если стороны пятиугольника в порядке обхода равны 4, 6, 8, 7 и 9, то его стороны не могут касаться одной окружности.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 508] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |